Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$$
\begin{gathered}
B_{\mathrm{eq}}=(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)\right. \\
+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)] .
\end{gathered}
$$

	\boldsymbol{x}	y	z	$B_{\text {eq }}$
Fe	$0.69887(7)$	$0.1619(1)$	$0.42116(7)$	$3.36(2)$
$\mathbf{O}(1)$	$1.0530(4)$	$0.0840(7)$	$0.1362(4)$	$5.5(1)$
$\mathrm{O}(2)$	$0.9051(4)$	$-0.0748(7)$	$0.0664(4)$	$5.4(1)$
$\mathrm{C}(1)$	$0.9598(5)$	$0.0061(8)$	$0.1443(5)$	$4.0(1)$
$\mathrm{C}(2)$	$0.9295(5)$	$0.0248(8)$	$0.2527(5)$	$3.7(1)$
$\mathrm{C}(3)$	$0.8402(5)$	$-0.0390(7)$	$0.2854(5)$	$3.4(1)$
$\mathrm{C}(4)$	$0.7546(6)$	$-0.1499(9)$	$0.2141(6)$	$4.9(2)$
$\mathrm{C}(5)$	$0.8178(5)$	$-0.0025(8)$	$0.3956(5)$	$3.5(1)$
$\mathrm{C}(6)$	$0.8713(5)$	$0.1210(8)$	$0.4696(5)$	$3.9(1)$
$\mathrm{C}(7)$	$0.8223(6)$	$0.1193(9)$	$0.5631(5)$	$4.4(2)$
$\mathrm{C}(8)$	$0.7360(7)$	$0.0021(9)$	$0.5490(5)$	$4.9(2)$
$\mathrm{C}(9)$	$0.7333(6)$	$-0.0765(8)$	$0.4471(5)$	$4.3(2)$
$\mathrm{C}(10)$	$0.6220(7)$	$0.2569(9)$	$0.2708(6)$	$5.5(2)$
$\mathrm{C}(11)$	$0.6785(7)$	$0.3762(9)$	$0.3394(6)$	$5.6(2)$
$\mathrm{C}(12)$	$0.6272(9)$	$0.380(1)$	$0.4314(7)$	$9.0(2)$
$\mathrm{C}(13)$	$0.5411(7)$	$0.255(1)$	$0.4234(7)$	$6.7(2)$
$\mathrm{C}(14)$	$0.5393(6)$	$0.182(1)$	$0.3220(6)$	$6.0(2)$

Table 2. Selected bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

$\mathrm{O}(1)-\mathrm{C}(1) \quad 1.302$	1.302 (4)	$\mathrm{O}(2)-\mathrm{C}(1) \quad 1.236$		
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.460$	1.460 (4)	$\mathrm{C}(3)-\mathrm{C}(5) \quad 1.467$	$1.236(4)$$1.467(4)$	
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.319$		$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.507$	1.507 (4)	
$\mathrm{Fe}-\mathrm{C}(\mathrm{Cp})$ (mean)	2.035 (4)	$\mathrm{C}-\mathrm{C}(\mathrm{Cp})$	1.408 (5)	
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	121.8 (3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.2 (3)	
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	125.2 (4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	123.5 (3)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	127.1 (3)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(9)$	126.8 (3)	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	120.7 (3)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	126.6 (3)	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	115.8 (3)			
$\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Cp})$ (mean)	108.0 (4)			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	-176.91	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$		2.15
$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-176.83	$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$		4.11

Fourier map and refined with fixed isotropic thermal parameters ($B=4.0 \AA^{2}$), but were only included in the structure-factor calculations in the last cycle of refinement. $\sum w\left(F_{o}-F_{c}\right)^{2}$ was minimized, where $w=$ $1 / \sigma^{2}\left(F_{o}\right)$ for all observed reflections. Final $R=0.061$, $w R=0.067, S=4.551,(\Delta / \sigma)_{\max }=0.18$ for 154 variables. The largest peak in the final ΔF map was
$0.969 \mathrm{e} \AA^{-3}$. Atomic scattering factors were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). All computations were performed on a PDP 11/44 computer, using the Enraf-Nonius SDP (Frenz, 1984).
The structure of the title compound is shown in Fig. 1. Positional parameters and equivalent values of the anisotropic temperature factors of non- H atoms are given in Table 1,* bond distances, selected bond angles and torsion angles are listed in Table 2.

Related literature. The structure of the butenoic acid group in the title compound is similar to that of crotonic acid $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$ (Shimizu, Kekka, Kashino \& Haisa, 1974). The structure of the title compound shows the (E) stereochemical conformation, which is compared with (Z)-(1,2-diphenylenethenyl)ferrocence (Cardin Crawford, Watts \& Hathaway, 1979).

The author is grateful to Professor Yin for supplying crystals.

[^0]
References

Cardin, C. J., Crawford, W., Watts, W. E. \& Hathaway, B. J. (1979). J. Chem. Soc. Dalton Trans. pp. 970-973.

Frenz, B. A. (1984). Enraf-Nonius Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Shimizu, S., Kekra, S., Kashino, S. \& Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627-1631.
Zhang, C. R., Yin, Y.-J., Zhou, Y. K. \& Wang, L. F. (1990). Chem. J. Chinese Univ. 11, 762-764.

Acta Cryst. (1993). C49, 932-934

3-Methoxyazetidinium Chloride

By Søren Bentzen, Per Halfdan Nielsen, Uffe Anthoni, Carsten Christophersen and Michael Gajhede*

Chemical Institute, The HC Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
(Received 5 February 1992; accepted 2 September 1992)

[^1]$100.40(1), \quad \beta=102.417(1), \quad \gamma=94.083(1)^{\circ}, \quad V=$ 313.8 (2) $\AA^{3}, \quad Z=2, \quad D_{x}=1.308(2) \mathrm{g} \mathrm{cm}^{-3}$, monochromatized $\mathrm{Cu} K \alpha, \lambda=1.5418 \AA, \mu=46.08 \mathrm{~cm}^{-1}$, $F(000)=132, T=122 \mathrm{~K}$, final $R=0.0474$, for 1262
unique observed reflections. The 3-methoxyazetidinium cations form infinite chains via hydrogen bonding with the chloride ions. The chains are directed along the a axis. The puckering angle is 168.7 (2) ${ }^{\circ}$.

Experimental. tert-Butyl 3-hydroxy-1-azetidinylcarboxylate was prepared from azetidin-3-ol (Gajhede, Anthoni, Christophersen \& Nielsen, 1989) and 3-pivaloyloxy-2,2-dimethylpropanoic acid according to the procedure of Tarbell, Yamamoto \& Pope (1972). An 85% yield of greasy crystals, m.p. 309-310 K, was achieved. Analysis for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$: calculated: C 55.47, H 8.73, N 8.09%; found: C 55.29 , H 8.94, N $7.97 \% .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 155.6(\mathrm{C}=\mathrm{O}), 78.6$ $\left(\mathrm{C}^{\prime}\right)$, $59.4(\mathrm{CH})$, $58.2\left(\mathrm{CH}_{2}\right)$, $27.4\left(\mathrm{CH}_{3}\right)$. Electronimpact mass spectrometry (EIMS): $m / z 173\left(M^{+}\right.$, 10), 158 ($M-15,40$), 130 ($M-43,100 \%$). Methylation of tert-butyl 3-hydroxy-1-azetidinylcarboxylate was accomplished with methyl iodide following the procedure outlined by Johnstone \& Rose (1979) to give tert-butyl 3-methoxy-1-azetidinylcarboxylate. Colourless oil, yield 83%. Analysis for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}$: calculated: C 57.73 , H 9.15 , $\mathrm{N} 7.48 \%$; found: C 57.79, H 8.94, N 7.42\%. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 155.5$ $(\mathrm{C}=\mathrm{O}), 78.4\left(\mathrm{C}^{\prime}\right), 68.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.4, d 55.1(\mathrm{CH}$, $\left.\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right)$. EIMS: $m / z 187\left(M^{+}, 15\right), 155(M$ - 32, 100%).

3-Methoxyazetidinium chloride was prepared by dissolving $187 \mathrm{mg}(1 \mathrm{mmol})$ of tert-butyl 3-hydroxy1 -azetidinylcarboxylate in a mixture of 2 ml ethanol and $1 \mathrm{ml} 2 M$ hydrochloric acid. This was stirred for 30 min at ambient temperature. The reaction mixture was taken to dryness and the residue recrystallized from absolute ethanol. Colourless crystals, m.p. $368.0-368.5 \mathrm{~K}$; yield 89%. Analysis for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{ClNO}$: calculated: C 38.87 , H 8.10 , N 11.34 , Cl 28.74%; found: C $38.66, \mathrm{H} 8.29, \mathrm{~N} 11.05, \mathrm{Cl} 28.75 \%{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 72.3\left(\mathrm{CH}_{3}\right), 58.1(\mathrm{CH}), 55.4\left(\mathrm{CH}_{2}\right)$. Fast-atom bombardment mass spectrometry (FABMS): $m / z 88,(M+H)$.
The crystal used for data collection had the dimensions $0.05 \times 0.15 \times 0.4 \mathrm{~mm}$. Preliminary film data indicated the triclinic space group $P \overline{1}$. Diffraction data were collected on an Enraf-Nonius CAD-4 diffractometer. The crystal was cooled to $122 \pm$ 0.8 K in a stream of N_{2} gas. The unit-cell dimensions were determined from a least-squares fit of 25 reflections, well distributed in reciprocal space, $40<\theta<$ $43^{\circ} .2342$ reflections were measured with $\omega / 2 \theta$ scans, $\theta \leq 75.0^{\circ}, h k l$ ranges: $h:-4$ to $6, k:-10$ to $10, l$: -10 to 10 . Three reflections $(10 \overline{3}, 032,020)$ were measured every 2.8 h to check for possible decay of the crystal. No change was detected. The intensity data were corrected for Lorentz-polarization and absorption effects. They were averaged to 1302 independent reflections $\left[R_{\text {int }}(I)=0.034\right], 1252$ of

Table 1. Positional and displacement parameters $\left(\AA^{2}\right)$

$\begin{gathered} B_{\mathrm{eq}}=(4 / 3)\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+(2 a b \cos \gamma) \beta_{12}+(2 a c \cos \beta) \beta_{13}\right. \\ \left.+(2 b c \cos \alpha) \beta_{23}\right] . \end{gathered}$				
	x	y	z	$B_{\text {eq }} / B_{\text {iso }}$
O(5)	0.2023 (2)	0.69425 (13)	0.09758 (12)	0.0138 (4)
N(3)	-0.0356 (3)	0.71734 (18)	0.40891 (16)	0.0186 (5)
C(1)	-0.0557 (3)	0.69132 (16)	0.14574 (16)	0.0142 (5)
$\mathrm{C}(2 A)$	-0.0678 (3)	0.56779 (18)	0.2637 (2)	0.0221 (4)
C(2B)	-0.0681 (3)	0.83931 (17)	0.29015 (18)	0.0159 (5)
C(6)	0.2280 (4)	0.82414 (19)	0.00253 (19)	0.0183 (6)
$\mathrm{Cl}(1)$	0.44676 (6)	0.23497 (4)	0.35914 (3)	0.0003 (2)
H(11)	-0.175 (5)	0.679 (3)	0.045 (3)	0.027 (5)
$\mathrm{H}(2 A 1)$	0.091 (5)	0.502 (3)	0.287 (3)	0.030 (5)
$\mathrm{H}(2 A 2)$	-0.229 (4)	0.486 (3)	0.256 (2)	0.018 (4)
$\mathrm{H}(2 \mathrm{Bl}$)	0.100 (5)	0.934 (3)	0.314 (3)	0.033 (6)
$\mathrm{H}(2 B 2)$	-0.252 (5)	0.883 (3)	0.291 (3)	0.027 (5)
H(31)	-0.179 (6)	0.710 (3)	0.454 (3)	0.035 (6)
H(32)	0.161 (7)	0.734 (4)	0.459 (3)	0.049 (7)
H(61)	0.093 (7)	0.810 (4)	-0.096 (4)	0.044 (8)
H(62)	0.252 (6)	0.940 (4)	0.064 (3)	0.034 (6)
H(63)	0.388 (6)	0.821 (4)	-0.038 (3)	0.034 (6)

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles (${ }^{\circ}$)

$\mathrm{O}(5)-\mathrm{C}(1) \quad 1.40$	1.4084 (18)	$\mathrm{C}(1)-\mathrm{H}(11) \quad 0.90$	
$\mathrm{O}(5)-\mathrm{C}(6) \quad 1.432$	1.4326 (19)	$\mathrm{C}(2 B)-\mathrm{H}(2 B 2) \quad 0.99$	
$\mathrm{N}(3)-\mathrm{C}(2 B) \quad 1.508$	1.508 (2)	$\mathrm{C}(2 B)-\mathrm{H}(2 B 1) \quad 1.04$	
$\mathrm{N}(3)-\mathrm{C}(2 A) \quad 1.518$	1.518 (2)	$\mathrm{C}(6)-\mathrm{H}(61) \quad 0.93$	
$\mathrm{C}(1)-\mathrm{C}(2 A) \quad 1.52$	1.526 (2)	$\mathrm{C}(6)-\mathrm{H}(62) \quad 0.96$	
$\mathrm{C}(1)-\mathrm{C}(2 B) \quad 1.54$	1.548 (2)	$\mathrm{C}(6)-\mathrm{H}(63) \quad 0.92$	
$\mathrm{N}(3)-\mathrm{H}(31) \quad 0.87$	0.87 (3)	$\mathrm{C}(2 A)-\mathrm{H}(2 A 1) \quad 0.97$	
$\mathrm{N}(3)-\mathrm{H}(32) \quad 0.95$	0.95 (3)	$\mathrm{C}(2 A)-\mathrm{H}(2 A 2) \quad 0.97$	
$\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(6)$	110.96 (12)	$\mathrm{N}(3)-\mathrm{C}(2 B)-\mathrm{H}(2 B 1)$	114.1 (13)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(2 A)$) 89.83 (10)	$\mathrm{C}(1)-\mathrm{C}(2 B)-\mathrm{H}(2 B 2)$	117.6 (14)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2 B)$	114.44 (11)	$\mathrm{C}(1)-\mathrm{C}(2 B)-\mathrm{H}(2 B 1)$	111.9 (14)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2 A)$) 110.78 (11)	$\mathrm{H}(2 B 2)-\mathrm{C}(2 B)-\mathrm{H}(2 B 1)$) 115 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(2 A)$) 88.05 (10)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{H}(61)$	115 (2)
$\mathrm{N}(3)-\mathrm{C}(2 B)-\mathrm{C}(1)$) 90.26 (10)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{H}(62)$	115.2 (16)
$\mathrm{N}(3)-\mathrm{C}(2 A)-\mathrm{C}(1)$) 90.74 (11)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{H}(63)$	111.9 (19)
$\mathrm{C}(2 B)-\mathrm{N}(3)-\mathrm{H}(31)$	1) 112.0 (17)	$\mathrm{H}(61)-\mathrm{C}(6)-\mathrm{H}(62)$	111 (3)
$\mathrm{C}(2 B)-\mathrm{N}(3)-\mathrm{H}(32)$	2) 103.6 (18)	$\mathrm{H}(61)-\mathrm{C}(6)-\mathrm{H}(63)$	100 (3)
$\mathrm{C}(2 A)-\mathrm{N}(3)-\mathrm{H}(31)$	1) 109.7 (16)	$\mathrm{H}(62)-\mathrm{C}(6)-\mathrm{H}(63)$	102 (3)
$\mathrm{C}(2 A)-\mathrm{N}(3)-\mathrm{H}(32)$	2) 104.2 (17)	$\mathrm{N}(3)-\mathrm{C}(2 A)-\mathrm{H}(2 A 1)$	108.2 (14)
$\mathrm{H}(31)-\mathrm{N}(3)-\mathrm{H}(32)$	2) $130(2)$	$\mathrm{N}(3)-\mathrm{C}(2 A)-\mathrm{H}(2 A 2)$	111.5 (11)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{H}(11)$) 99.6 (16)	$\mathrm{C}(1)-\mathrm{C}(2 A)-\mathrm{H}(2 A 1)$	117.3 (14)
$\mathrm{C}(2 B)-\mathrm{C}(1)-\mathrm{H}(11)$	1) 120.8 (16)	$\mathrm{C}(1)-\mathrm{C}(2 A)-\mathrm{H}(2 A 2)$	124.5 (11)
$\mathrm{C}(2 A)-\mathrm{C}(1)-\mathrm{H}(11)$	1) 123.9 (16)	$\mathrm{H}(2)-\mathrm{C}(2 A)-\mathrm{H}(2 A 2)$	103 (2)
$\mathrm{C}(6)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2 B)$	(2B) -75.72 (14)	$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2 B)-\mathrm{N}(3)$	- 104.01 (12)
$\mathrm{C}(6)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2 A)$	(2A) - 173.33 (11)	$\mathrm{C}(2 B)-\mathrm{C}(1)-\mathrm{C}(2 A)-\mathrm{N}(3)$	- 7.93 (11)
$\mathrm{C}(2 A)-\mathrm{N}(3)-\mathrm{C}(2 B)-\mathrm{C}(1)$	C(1) -8.02 (11)	$\mathrm{C}(2 A)-\mathrm{C}(1)-\mathrm{C}(2 B)-\mathrm{N}(3)$	7.99 (11)
$\mathrm{C}(2 B)-\mathrm{N}(3)-\mathrm{C}(2 A)-\mathrm{C}(1)$	- $\mathrm{C}(1) \quad 8.14$ (11)	$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2 A)-\mathrm{N}(3)$	107.53 (12)

Fig. 1. PLATON (Spek, 1990) drawing of the 3-methoxyazetidinium cation. The thermal ellipsoids for non-H atoms are drawn at the 50% probability level.
which with $F_{o}^{2}>3.0 \sigma\left(F_{o}^{2}\right)$ were considered observed. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1990) and least-squares refined on F with the SHELX 76 (Sheldrick, 1976) program. The H atoms were located and included in Fourier summations. 104 parameters were refined to $R=0.047, w R=0.048$ and $S=0.34$ with $w=\left[\sigma^{2}(F)\right.$ $\left.+0.045 F^{2}\right]^{-1}$; max. and min. heights in final $\Delta \rho$ map are 0.54 (3) and -0.84 (3) e \AA^{-3}, respectively, $(\Delta / \rho)_{\max }=0.008$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV), except for H atoms which were taken from Stewart, Davidson \& Simpson (1965).

Final atomic coordinates and isotropic or equivalent isotropic displacement parameters are listed in Table 1.* Bond distances and angles are given in Table 2. All geometric calculations were calculated with program PLATON (Spek, 1990). A perspective drawing of one of the molecules is shown in Fig. 1 giving the atomic numbering scheme.

Each chloride ion accepts two hydrogen bonds: $\mathrm{N}(3)-\mathrm{H}(31) \cdots \mathrm{Cl}(1)$ with angle $159(2)^{\circ}$ and $\mathrm{N}(3)-$

[^2]$\mathrm{H}(32) \cdots \mathrm{Cl}(1)$ with angle $162(2)^{\circ}$. The $\mathrm{N}(3) \cdots \mathrm{Cl}(1)$ distances are 3.090 (2) and 3.072 (2) \AA, respectively. The effects of hydrogen bonding on the puckering angle seems to cancel out in this system owing to the symmetric forces on the N atom.

Related literature. This structure determination is part of an investigation of the conformational properties of the azetidinol system (Gajhede et al., 1989; Hagen, Volden, Gajhede, Anthoni, Christophersen \& Nielsen, 1991).

The authors wish to thank Mr Flemming Hansen for technical assistance.

References

Gaihede, M., Anthoni, U., Christophersen, C. \& Nielsen, P. H. (1989). Acta Cryst. B45, 562-566.

Hagen, K., Volden, H. V., Gajhede, M., Anthon, U., Christophersen, C. \& Nielsen, P. H. (1991). J. Phys. Chem. 95, 1597-1600.
Johnstone, A. W. \& Rose, M. E. (1979). Tetrahedron, 35, 2169 2173.

Sheldrick, G. M. (1976). Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Spek, A. L. (1990). Acta Cryst. A46, C34.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Tarbell, D. S., Yamamoto, Y. \& Pope, B. M. (1972). Proc. Natl Acad. Sci. USA, 69, 730-734.

Acta Cryst. (1993). C49, 934-936

Structure and Configuration of the Michael Adduct of 2-(Methylthio)thiolane S-Oxide and Butenone at $173 \mathrm{~K}^{*}$

By J.-S. Brunck and J. Voss \dagger
Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Germany

and F. Olbrich and H. Viebrock
Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Germany
(Received 12 June 1992; accepted 22 December 1992)

Abstract. (E)-2-Methylthio-2-(3-oxobutyl)thiolane 1-oxide, $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}, \quad M_{r}=220.36$, orthorhombic, $P 2_{1} a b$ (No. 29, non-standard), $a=7.737$ (3), $b=$

[^3]9.533 (2), $c=14.725$ (5) $\AA, V=1086.1$ (6) $\AA^{3}, Z=4$, $D_{x}=1.348 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54051 \AA, \quad \mu=$ $41.3 \mathrm{~cm}^{-1}, F(000)=472, T=173 \mathrm{~K}, R=0.063$ for 990 observed reflections $\left[\left|F_{o}\right| \geq 4 \sigma\left(F_{o}\right)\right]$. The thiolane ring in (1) exhibits a half-chair conformation with quasi-axial positions of the sulfoxide O atom and the methylthio group. The E (trans) isomer (1) is the

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55657 (14 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH0554]

[^1]: Abstract. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} . \mathrm{Cl}^{-}, M_{r}=123.58$, triclinic, $P \overline{1}$, $a=4.9016$ (8), $\quad b=7.975(1), c=8.4134$ (7) $\AA, \alpha=$

 * Author to whom correspondence should be addressed.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55670 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: AB1008]

[^3]: * C,C-Coupling with Sulfur-Stabilized Carbanions. 3. Part 2: Böge, Brunck, Schwär \& Voss (1992).
 \dagger To whom correspondence should be addressed.

